Repurposing the Public BraTS Dataset for Postoperative Brain Tumour Treatment Response Monitoring

Author:

Sørensen Peter Jagd123ORCID,Ladefoged Claes Nøhr45,Larsen Vibeke Andrée1,Andersen Flemming Littrup24ORCID,Nielsen Michael Bachmann12,Poulsen Hans Skovgaard3,Carlsen Jonathan Frederik12ORCID,Hansen Adam Espe123ORCID

Affiliation:

1. Department of Radiology, Centre of Diagnostic Investigation, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark

2. Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark

3. The DCCC Brain Tumor Center, 2100 Copenhagen, Denmark

4. Department of Clinical Physiology and Nuclear Medicine, Centre of Diagnostic Investigation, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark

5. Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark

Abstract

The Brain Tumor Segmentation (BraTS) Challenge has been a main driver of the development of deep learning (DL) algorithms and provides by far the largest publicly available expert-annotated brain tumour dataset but contains solely preoperative examinations. The aim of our study was to facilitate the use of the BraTS dataset for training DL brain tumour segmentation algorithms for a postoperative setting. To this end, we introduced an automatic conversion of the three-label BraTS annotation protocol to a two-label annotation protocol suitable for postoperative brain tumour segmentation. To assess the viability of the label conversion, we trained a DL algorithm using both the three-label and the two-label annotation protocols. We assessed the models pre- and postoperatively and compared the performance with a state-of-the-art DL method. The DL algorithm trained using the BraTS three-label annotation misclassified parts of 10 out of 41 fluid-filled resection cavities in 72 postoperative glioblastoma MRIs, whereas the two-label model showed no such inaccuracies. The tumour segmentation performance of the two-label model both pre- and postoperatively was comparable to that of a state-of-the-art algorithm for tumour volumes larger than 1 cm3. Our study enables using the BraTS dataset as a basis for the training of DL algorithms for postoperative tumour segmentation.

Funder

Danish Cancer Society

Publisher

MDPI AG

Reference37 articles.

1. Deep learning based brain tumor segmentation: A survey;Liu;Complex Intell. Syst.,2023

2. Magadza, T., and Viriri, S. (2021). Deep Learning for Brain Tumor Segmentation: A Survey of State-of-the-Art. J. Imaging, 7.

3. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation;Isensee;Nat. Methods,2021

4. (2023, December 30). Brain Tumor Segmentation (BraTS) Challenge. Available online: https://www.med.upenn.edu/cbica/brats/.

5. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Takeshi Shinohara, R., Berger, C., Ha, S.M., and Rozycki, M. (2018). Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3