Accelerated Simultaneous T2 and T2* Mapping of Multiple Sclerosis Lesions Using Compressed Sensing Reconstruction of Radial RARE-EPI MRI

Author:

Herrmann Carl J. J.12ORCID,Starke Ludger13ORCID,Millward Jason M.14ORCID,Kuchling Joseph456,Paul Friedemann456,Niendorf Thoralf14ORCID

Affiliation:

1. Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany

2. Department of Physics, Humboldt Universität zu Berlin, 12489 Berlin, Germany

3. Digital Health—Machine Learning Research Group, Digital Health Center, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany

4. Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Campus Berlin-Buch, 13125 Berlin, Germany

5. NeuroCure Clinical Research Center, Charité—Universitätsmedizin, 10117 Berlin, Germany

6. Department of Neurology, Charité—Universitätsmedizin, 10117 Berlin, Germany

Abstract

(1) Background: Radial RARE-EPI MRI facilitates simultaneous T2 and T2* mapping (2in1-RARE-EPI). With modest undersampling (R = 2), the speed gain of 2in1-RARE-EPI relative to Multi-Spin-Echo and Multi-Gradient-Recalled-Echo references is limited. Further reduction in scan time is crucial for clinical studies investigating T2 and T2* as imaging biomarkers. We demonstrate the feasibility of further acceleration, utilizing compressed sensing (CS) reconstruction of highly undersampled 2in1-RARE-EPI. (2) Methods: Two-fold radially-undersampled 2in1-RARE-EPI data from phantoms, healthy volunteers (n = 3), and multiple sclerosis patients (n = 4) were used as references, and undersampled (Rextra = 1–12, effective undersampling Reff = 2–24). For each echo time, images were reconstructed using CS-reconstruction. For T2 (RARE module) and T2* mapping (EPI module), a linear least-square fit was applied to the images. T2 and T2* from CS-reconstruction of undersampled data were benchmarked against values from CS-reconstruction of the reference data. (3) Results: We demonstrate accelerated simultaneous T2 and T2* mapping using undersampled 2in1-RARE-EPI with CS-reconstruction is feasible. For Rextra = 6 (TA = 01:39 min), the overall MAPE was ≤8% (T2*) and ≤4% (T2); for Rextra = 12 (TA = 01:06 min), the overall MAPE was <13% (T2*) and <5% (T2). (4) Conclusion: Substantial reductions in scan time are achievable for simultaneous T2 and T2* mapping of the brain using highly undersampled 2in1-RARE-EPI with CS-reconstruction.

Funder

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program

Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3