Computational Optimization of the 3D Least-Squares Matching Algorithm by Direct Calculation of Normal Equations

Author:

Liebold FrankORCID,Maas Hans-GerdORCID

Abstract

3D least-squares matching is an algorithm that allows to measure subvoxel-precise displacements between two data sets of computed tomography voxel data. The determination of precise displacement vector fields is an important tool for deformation analyses in in-situ X-ray micro-tomography time series. The goal of the work presented in this publication is the development and validation of an optimized algorithm for 3D least-squares matching saving computation time and memory. 3D least-squares matching is a gradient-based method to determine geometric (and optionally also radiometric) transformation parameters between consecutive cuboids in voxel data. These parameters are obtained by an iterative Gauss-Markov process. Herein, the most crucial point concerning computation time is the calculation of the normal equations using matrix multiplications. In the paper at hand, a direct normal equation computation approach is proposed, minimizing the number of computation steps. A theoretical comparison shows, that the number of multiplications is reduced by 28% and the number of additions by 17%. In a practical test, the computation time of the 3D least-squares matching algorithm was proven to be reduced by 27%.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

Reference20 articles.

1. A Class of Algorithms for Fast Digital Image Registration

2. DIGITAL IMAGE CORRELATION: PERFORMANCE AND POTENTIAL APPLICATION IN PHOTOGRAMMETRY

3. Adaptive least squares correlation: A powerful image matching technique;Grün;S. Afr. J. Photogramm. Remote Sens. Cartogr.,1985

4. Least-squares matching with advanced geometric transformation models;Bethmann;Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3