Impact of Tomosynthesis Acquisition on 3D Segmentations of Breast Outline and Adipose/Dense Tissue with AI: A Simulation-Based Study

Author:

Barufaldi Bruno1ORCID,Gomes Jordy2,Rego Thais G. do2,Malheiros Yuri2ORCID,Filho Telmo M. Silva3ORCID,Borges Lucas R.4,Acciavatti Raymond J.1ORCID,Surti Suleman1,Maidment Andrew D. A.1

Affiliation:

1. Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA

2. Center of Informatics, Federal University of Paraiba, Joao Pessoa 58051-900, PB, Brazil

3. Department of Engineering Mathematics, University of Bristol, Bristol BS8 1QU, UK

4. Real Time Tomography, LCC, Villanova, PA 19085-1801, USA

Abstract

Digital breast tomosynthesis (DBT) reconstructions introduce out-of-plane artifacts and false-tissue boundaries impacting the dense/adipose and breast outline (convex hull) segmentations. A virtual clinical trial method was proposed to segment both the breast tissues and the breast outline in DBT reconstructions. The DBT images of a representative population were simulated using three acquisition geometries: a left–right scan (conventional, I), a two-directional scan in the shape of a “T” (II), and an extra-wide range (XWR, III) left–right scan at a six-times higher dose than I. The nnU-Net was modified including two losses for segmentation: (1) tissues and (2) breast outline. The impact of loss (1) and the combination of loss (1) and (2) was evaluated using models trained with data simulating geometry I. The impact of the geometry was evaluated using the combined loss (1&2). The loss (1&2) improved the convex hull estimates, resolving 22.2% of the false classification of air voxels. Geometry II was superior to I and III, resolving 99.1% and 96.8% of the false classification of air voxels. Geometry III (Dice = (0.98, 0.94)) was superior to I (0.92, 0.78) and II (0.93, 0.74) for the tissue segmentation (adipose, dense, respectively). Thus, the loss (1&2) provided better segmentation, and geometries T and XWR improved the dense/adipose and breast outline segmentations relative to the conventional scan.

Funder

Terri Brodeur Breast Cancer Foundation

American Association of Physicists in Medicine

Breast Cancer Alliance

Department of Defense Breast Cancer Research Program

Burroughs Wellcome Fund

Susan G. Komen®

National Institutes of Health

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3