Clinical Quality Control of MRI Total Kidney Volume Measurements in Autosomal Dominant Polycystic Kidney Disease

Author:

Zhu Chenglin12,Dev Hreedi2ORCID,Sharbatdaran Arman2ORCID,He Xinzi12,Shimonov Daniil34,Chevalier James M.34ORCID,Blumenfeld Jon D.34,Wang Yi1ORCID,Teichman Kurt2,Shih George2,Goel Akshay2ORCID,Prince Martin R.25ORCID

Affiliation:

1. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA

2. Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA

3. Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA

4. The Rogosin Institute, New York, NY 10021, USA

5. Columbia College of Physicians and Surgeons, New York, NY 10032, USA

Abstract

Total kidney volume measured on MRI is an important biomarker for assessing the progression of autosomal dominant polycystic kidney disease and response to treatment. However, we have noticed that there can be substantial differences in the kidney volume measurements obtained from the various pulse sequences commonly included in an MRI exam. Here we examine kidney volume measurement variability among five commonly acquired MRI pulse sequences in abdominal MRI exams in 105 patients with ADPKD. Right and left kidney volumes were independently measured by three expert observers using model-assisted segmentation for axial T2, coronal T2, axial single-shot fast spin echo (SSFP), coronal SSFP, and axial 3D T1 images obtained on a single MRI from ADPKD patients. Outlier measurements were analyzed for data acquisition errors. Most of the outlier values (88%) were due to breathing during scanning causing slice misregistration with gaps or duplication of imaging slices (n = 35), slice misregistration from using multiple breath holds during acquisition (n = 25), composing of two overlapping acquisitions (n = 17), or kidneys not entirely within the field of view (n = 4). After excluding outlier measurements, the coefficient of variation among the five measurements decreased from 4.6% pre to 3.2%. Compared to the average of all sequences without errors, TKV measured on axial and coronal T2 weighted imaging were 1.2% and 1.8% greater, axial SSFP was 0.4% greater, coronal SSFP was 1.7% lower and axial T1 was 1.5% lower than the mean, indicating intrinsic measurement biases related to the different MRI contrast mechanisms. In conclusion, MRI data acquisition errors are common but can be identified using outlier analysis and excluded to improve organ volume measurement consistency. Bias toward larger volume measurements on T2 sequences and smaller volumes on axial T1 sequences can also be mitigated by averaging data from all error-free sequences acquired.

Funder

Weill Cornell Medicine Clinical & Translational Science Center

Shaw Foundation

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3