Studying the Anti-Virulence Activity of Meta-Bromo-Thiolactone against Staphylococcus aureus and MRSA Phenotypes

Author:

Alfaraj Rihaf1,Eltayb Esra K.1,AlFayez Bashayer M.1,Abohamad Amjad1,Eltahir Eram1ORCID,Alenazi Naifa A.1,Hababah Sandra1ORCID,Alkahtani Hamad2ORCID,Almangour Thamer A.3ORCID,Alqahtani Fulwah Y.1ORCID,Aleanizy Fadilah S.1ORCID

Affiliation:

1. Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia

2. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 45142, Saudi Arabia

3. Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia

Abstract

Quorum-sensing inhibitors have recently garnered great interest, as they reduce bacterial virulence, lower the probability of resistance, and inhibit infections. In this work, meta-bromo-thiolactone (mBTL), a potent quorum and virulence inhibitor of Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA), was formulated in chitosan nanoparticles (ChNPs) using the ionic gelation method. The mBTL-loaded-ChNPs were characterized by their particle size, polydispersity index, zeta potential, morphology, and drug release profile. The results show that the mBTL-loaded-CNPs comprised homogenized, spherical nanoparticles ranging from 158 ± 1.3 to 284 ± 5.6 nm with a sustainable release profile over 48 h at 37 °C. These findings confirm the successful preparation of mBTL-loaded-ChNPs. Confocal laser scanning microscopy showed a significant reduction in the number of viable cells, indicating the antibacterial efficacy of mBTL. Biofilms were observed by scanning electron microscopy, which showed that the bacterial cells in the control experiment were enclosed in thick biofilms. In the presence of mBTL, the bacterial cells remained disordered and did not form a biofilm. mBTL-loaded-ChNPs represent a potential approach to overcoming antimicrobial resistance in the treatment of MRSA infection.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3