In Silico Identification of Sugarcane Genome-Encoded MicroRNAs Targeting Sugarcane Mosaic Virus

Author:

Wenzhi Wang1,Ashraf Muhammad Aleem12ORCID,Ghaffar Hira2,Ijaz Zainab3,Zaman Waqar ul3,Mazhar Huda2,Zulfqar Maryam2,Zhang Shuzhen1

Affiliation:

1. National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

2. Institute of Biological Sciences, Faculty of Natural and Applied Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan

3. Joint International Research Laboratory of Agriculture and Agri-product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, China

Abstract

Sugarcane mosaic virus (SCMV) (genus, Potyvirus; family, Potyviridae) is widespread, deleterious, and the most damaging pathogen of sugarcane (Saccharum officinarum L. and Saccharum spp.) that causes a substantial barrier to producing high sugarcane earnings. Sugarcane mosaic disease (SCMD) is caused by a single or compound infection of SCMV disseminated by several aphid vectors in a non-persistent manner. SCMV has flexuous filamentous particle of 700–750 nm long, which encapsidated in a positive-sense, single-stranded RNA molecule of 9575 nucleotides. RNA interference (RNAi)-mediated antiviral innate immunity is an evolutionarily conserved key biological process in eukaryotes and has evolved as an antiviral defense system to interfere with viral genomes for controlling infections in plants. The current study aims to analyze sugarcane (Saccharum officinarum L. and Saccharum spp.) locus-derived microRNAs (sof-miRNAs/ssp-miRNAs) with predicted potential for targeting the SCMV +ssRNA-encoded mRNAs, using a predictive approach that involves five algorithms. The ultimate goal of this research is to mobilize the in silico- predicted endogenous sof-miRNAs/ssp-miRNAs to experimentally trigger the catalytic RNAi pathway and generate sugarcane cultivars to evaluate the potential antiviral resistance surveillance ability and capacity for SCMV. Experimentally validated mature sugarcane (S. officinarum, 2n = 8X = 80) and (S. spp., 2n = 100–120) sof-miRNA/ssp-miRNA sequences (n = 28) were downloaded from the miRBase database and aligned with the SCMV genome (KY548506). Among the 28 targeted mature locus-derived sof-miRNAs/ssp-miRNAs evaluated, one sugarcane miRNA homolog, sof-miR159c, was identified to have a predicted miRNA binding site, at nucleotide position 3847 of the SCMV genome targeting CI ORF. To verify the accuracy of the target prediction accuracy and to determine whether the sugarcane sof-miRNA/ssp-miRNA could bind the predicted SCMV mRNA target(s), we constructed an integrated Circos plot. A genome-wide in silico-predicted miRNA-mediated target gene regulatory network was implicated to validate interactions necessary to warrant in vivo analysis. The current work provides valuable computational evidence for the generation of SCMV-resistant sugarcane cultivars.

Funder

National Key Research and Development Program of China

Central Public-Interest Scientific Institution Basal Research Fund

Earmarked fund for Chinese Agriculture Research System

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3