Genome-Wide Identification of Cotton MicroRNAs Predicted for Targeting Cotton Leaf Curl Kokhran Virus-Lucknow

Author:

Ashraf Muhammad Aleem12ORCID,Brown Judith K.3ORCID,Iqbal Muhammad Shahzad4ORCID,Yu Naitong1

Affiliation:

1. Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

2. Institute of Biological Sciences, Faculty of Natural and Applied Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan

3. School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA

4. Department of Biochemistry, University of Okara, Okara 56300, Pakistan

Abstract

Cotton leaf curl Kokhran virus (CLCuKoV) (genus, Begomovirus; family, Geminiviridae) is one of several plant virus pathogens of cotton (Gossypium hirsutum L.) that cause cotton leaf curl disease in Pakistan. Begomoviruses are transmitted by the whitefly Bemisia tabaci cryptic species group and cause economic losses in cotton and other crops worldwide. The CLCuKoV strain, referred to as CLCuKoV-Bur, emerged in the vicinity of Burewala, Pakistan, and was the primary causal virus associated with the second CLCuD epidemic in Pakistan. The monopartite ssDNA genome of (2.7 Kb) contains six open reading frames that encode four predicted proteins. RNA interference (RNAi)-mediated antiviral immunity is a sequence-specific biological process in plants and animals that has evolved to combat virus infection. The objective of this study was to design cotton locus-derived microRNA (ghr-miRNA) molecules to target strains of CLCuKoV, with CLCuKoV-Lu, as a typical CLCuD-begomovirus genome, predicted by four algorithms, miRanda, RNA22, psRNATarget, and RNA hybrid. Mature ghr-miRNA sequences (n = 80) from upland cotton (2n = 4x = 52) were selected from miRBase and aligned with available CLCuKoV-Lu genome sequences. Among the 80 cotton locus-derived ghr-miRNAs analyzed, ghr-miR2950 was identified as the most optimal, effective ghr-miRNA for targeting the CLCuKoV-Lu genome (nucleotide 82 onward), respectively, based on stringent criteria. The miRNA targeting relies on the base pairing of miRNA–mRNA targets. Conservation and potential base pairing of binding sites with the ghr-miR2950 were validated by multiple sequence alignment with all available CLCuKoV sequences. A regulatory interaction network was constructed to evaluate potential miRNA–mRNA interactions with the predicted targets. The efficacy of miRNA targeting of CLCuKoV was evaluated in silico by RNAi-mediated mRNA cleavage. This predicted targets for the development of CLCuD-resistant cotton plants.

Funder

Central Public-interest Scientific Institution Basal Research Fund

Hainan Provincial Natural Science Foundation

Guangxi Key Laboratory of Biology for Mango

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3