Development of a Novel Emulsion Formulation of Trichoderma asperelloides PSU-P1 Conidia against Stem Canker on Dragon Fruit Caused by Neoscytalidium dimidiatum

Author:

Intana Warin1,Wonglom Prisana2,Dy Kim Sreang3,Sunpapao Anurag3ORCID

Affiliation:

1. School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand

2. Department of Plant Science, Faculty of Technology and Community Development, Thaksin University, Phatthalung Campus, Phatthalung 93210, Thailand

3. Agricultural Innovation and Management Division (Pest Management), Faculty of Natural Resources, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand

Abstract

Stem canker on dragon fruit caused by Neoscytalidium dimidiatum causes severe losses in production of this fruit worldwide. Biological control by Trichoderma species is widely used to control several plant diseases. However, environmental conditions affect the use of biocontrol agents in the field. The development of a new formulation may offer an alternative way to address the problem of stem canker on dragon fruit caused by N. dimidiatum. In this study, we sought to develop a Trichoderma asperelloides PSU-P1 formulation that would be effective against N. dimidiatum. Three vegetable oils, two emulsifier-dispersing agents (Tween 20 and Tween 80), and one source of carbon (dextrose) were tested for carrier additives. We assessed the viability and antifungal ability of formulations incubated at ambient temperature and at 10 °C during a storage period of 1–6 months. The formulation composed of coconut oil, DW, and tween 20 in a ratio of 30:60:10 required a mixing time of 1.14 min; this was significantly faster than the mixing times of other formulations. Application of this formulation suppressed canker development; a canker area of 0.53 cm2 was recorded, compared with a control (pathogen only) area of 1.65 cm2. In terms of viability, this formulation stored at ambient temperature showed a surface area percentage of T. asperelloides PSU-P1 ranging from 64.43 to 75.7%; the corresponding range for the formulation stored at cool temperature was 70.59–75.6%. For both formulations, percentage inhibition gradually decreased from 1 to 6 months, with ranges of 59.21–77% and 60.65–76.19% for formulations incubated at ambient and cool temperatures, respectively. Our findings suggest that the formulation developed in this study prolongs the viability of T. asperelloides PSU-P1 conidia by up to 6 months, effectively inhibits N. dimidiatum in vitro, and reduces stem canker in vivo.

Funder

National Science, Research and Innovation Fund (NSRF) and Prince of Songkla University

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3