Affiliation:
1. Graduate Program in Parasite Biology in the Amazon (PPGBPA), Center for Biological and Health Sciences (CCBS), University of Pará State (UEPA), Belém 66095-662, Brazil
Abstract
Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral spike protein (S) has become a target to describe appropriate epitopes for vaccine development and to carry out epidemiological surveillance, especially regarding the variants of concern (VOCs). This study aimed to evaluate the influence of mutations on physicochemical properties of S proteins from prototypical SARS-CoV-2 VOCs detected in Amazonian countries. Using multiple computational tools, seven VOCs (B.1.1.7/P.1/B.1.617.2/BA.1/BA.2/BA.4/BA.5) were identified and compared to the ancestral lineage of the virus (B). In all variants, most amino acids were nonpolar; among the polar amino acids, B.1.617.2/BA.1/BA.2/BA.4/BA.5 presented a slightly higher proportion of basic residues and a lower proportion of neutral residues. Unlike B.1.1.7/P.1/B.1.617.2, BA.1/BA.2 had a greater content of secondary structures, such as α-helices and β-sheets. Regarding post-translational modifications, BA.2/BA.4/BA.5 presented fewer glycosylations and phosphorylations. Finally, a more prominent antigenic propensity in the N-terminal domain of BA.2/BA.4/BA.5 and in the receptor-binding domain of B.1.617.2/BA.4/BA.5 was observed. In conclusion, the omicron variants of SARS-CoV-2 presented greater sequence variability in S proteins compared to the other VOCs, influencing structural aspects that can potentially modulate its interaction with cellular receptors and recognition by the immune system.
Funder
Brazilian Federal Agency for Support and Evaluation of Graduate Education