Forensic Genomic Analysis Determines That RaTG13 Was Likely Generated from a Bat Mating Plug

Author:

Massey Steven E.1

Affiliation:

1. Biology Department, University of Puerto Rico—Rio Piedras, San Juan, PR 00901, USA

Abstract

RaTG13 is phylogenomically the closest related coronavirus to SARS-CoV-2; consequently, understanding the provenance of this high-value genome sequence is important in understanding the origin of SARS-CoV-2. While RaTG13 was described as being generated from a Rhinolophus affinis fecal swab obtained from a mine in Mojiang, Yunnan, numerous investigators have pointed out that this is inconsistent with the low proportion of bacterial reads in the sequencing dataset. Metagenomic analysis confirms that only 10.3% of small-subunit (SSU) rRNA sequences in the dataset are bacterial, which is inconsistent with a fecal sample. In addition, the bacterial taxa present in the sample are shown to be inconsistent with fecal material. The assembly of mitochondrial SSU rRNA sequences in the dataset produces a sequence 98.7% identical to R. affinis mitochondrial SSU rRNA, indicating that the sample was generated from R. affinis or a closely related species. In addition, 87.5% of the reads in the dataset map to the Rhinolophus ferrumequinum genome, and 62.2% of these map to protein-coding genes, indicating that the dataset represents a Rhinolophus sp. transcriptome rather than a fecal swab sample. Differential gene expression analysis reveals that the pattern of expressed genes in the RaTG13 dataset is similar to that of RaTG15, which was also collected from the Mojiang mine. GO enrichment analysis reveals the overexpression of spermatogenesis- and olfaction-related genes in both datasets. This observation is consistent with a mating plug found in female Rhinolophid bats and suggests that RaTG13 was mis-sampled from such a plug. A validated natural provenance of the RaTG13 dataset throws into relief the unusual features of the SARS-CoV-2 genome.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3