Phenolic Compounds Synthesized by Trichoderma longibrachiatum Native to Semi-Arid Areas Show Antifungal Activity against Phytopathogenic Fungi of Horticultural Interest

Author:

Díaz-García Enis1,Valenzuela-Quintanar Ana Isabel2,Sánchez-Estrada Alberto1ORCID,González-Mendoza Daniel3ORCID,Tiznado-Hernández Martín Ernesto1ORCID,Islas-Rubio Alma Rosa1,Troncoso-Rojas Rosalba1ORCID

Affiliation:

1. Coordination of Plant-Origin Food Technology, Research Center for Food and Development, Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo CP 83304, Sonora, Mexico

2. Department of Food Sciences, Research Center for Food and Development, Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo CP 83304, Sonora, Mexico

3. Institute of Agricultural Sciences, Autonomous University of Baja California, Carretera a Delta s/n, Ejido Nuevo León, Mexicali CP 21705, Baja California, Mexico

Abstract

Fungal diseases are a major threat to the horticultural industry and cause substantial postharvest losses. While secondary metabolites from Trichoderma sp. have been explored for their antifungal properties, limited information exists on the phenolic compounds produced by less studied species like Trichoderma longibrachiatum. In this study, phenolic compounds were extracted from a liquid culture of T. longibrachiatum using various solvents and methods (conventional and ultrasonic-assisted). Phenolic compounds were quantified by spectrophotometry and identified by high-performance liquid chromatography with diode array detection (HPLC-DAD). The antifungal activity against Alternaria alternata and Fusarium oxysporum was determined by mycelial growth inhibition assays, maximum growth rate (µmax) by the Gompertz equation, and spore germination tests. Although no significant differences (p ≥ 0.05) were found between the extraction methods, the type of solvent significantly influenced the phenolic content (p ≤ 0.05). Extraction with 70% ethanol showed the highest content of phenolic compounds and flavonoids. More than eight phenolic compounds were detected. Further, this is the first report of the phenolics ferulic, chlorogenic and p-coumaric acids identification in T. longibrachiatum, along with flavonoids such as epicatechin and quercetin, among others. The 70% ethanolic extracts notably inhibited the mycelial growth of A. alternata and F. oxysporum, reducing their maximum growth rate by 1.5 and 1.4 mm/h, respectively. Furthermore, p-coumaric and ferulic acids significantly inhibited spore germination of both pathogens, with a minimum inhibitory concentration (MIC) of 1.5 mg/mL and a minimum fungicidal concentration (MFC) of 2 mg/mL. These findings demonstrate the potential of T. longibrachiatum and its phenolic compounds as viable alternatives for biological control in horticulture and postharvest disease management.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3