Complete Genome Sequence of the Butirosin-Producing Bacillus vitellinus NBRC 13296 and Its Reclassification to Paenibacillus chitinolyticus

Author:

Hyun Kyung-A.1,Kim Seung-Young2,Boo Kyung-Hwan1ORCID,Chi Won-Jae3,Hyun Chang-Gu4ORCID

Affiliation:

1. Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea

2. Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan 31460, Republic of Korea

3. Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea

4. Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea

Abstract

Butirosins are naturally occurring aminoglycoside (AG) antibiotics featuring a 4,5-disubstituted 2-deoxystreptamine (2-DOS) with a (2S)-4-amino-2-hydroxybutyrate (AHBA) side chain. This side chain has been shown to confer resistance against AG-modifying enzymes, leading to ongoing studies on the butirosin biosynthetic pathway and the corresponding enzymes. Butirosin is produced by Niallia (formerly Bacillus) circulans and Bacillus vitellinus, with most research focused on the first strain. To date, no whole-genome analysis has been performed on B. vitellinus. In this study, we sequenced the complete genome of B. vitellinus NBRC 13296 and performed a comparative analysis of different butirosin biosyntheric gene clusters (BGCs), including those from N. circulans. The complete genome of B. vitellinus NBRC 13296 comprises a 6,331,192-base circular chromosome with GC content of 52.68%. The annotation revealed the presence of 5605 CDSs, 70 tRNA genes, 30 rRNA genes, and 3 ncRNA genes in NBRC 13296. The highest dDDH and ANI values between NBRC 13296 and the most closely related type strain, Paenibacillus chitinolyticus KCCM 41,400, were 97.8% and 98.66%, respectively. Based on these genome-based comparative analyses, we propose reclassifying B. vitellinus NBRC 13296 as P. chitinolyticus. Genome mining revealed 18 gene clusters encoding the biosynthesis of diverse secondary metabolites in the genome of B. vitellinus NBRC 13296, indicating the enormous biosynthetic potential of this strain. The predicted structural diversity of the secondary metabolites includes aminoglycosides, PKS, NRPS, PKS–NRPS hybrids, metallophores, phosphonates, terpenes, β-lactones, and RiPP peptides. We then comparatively characterized the butirosin BGCs previously studied in several N. circulans strains. Additionally, the comparative genome analysis revealed complete butirosin BGCs identified from P. chitinolyticus KCCM 41,400, P. chitinolyticus NRRL B-23119, P. chitinolyticus NRRL B-23120, P. chitinolyticus B-14908, P. chitinolyticus YSY-3.1, P. chitinolyticus JMW06, Paenibacillus sp. GbtcB18, Paenibacillus sp. HGH0039, and Paenibacillus sp. MZ04-78.2. Finally, we identified the core region consisting of BtrS, BtrN, BtrM, BtrL, BtrA, BtrB, BtrC, BtrD, BtrD, BtrE, BtrF, BtrG, BtrH, BtrI, BtrI, BtrJ, BtrK, BtrO, BtrP, and BtrV, followed by an upstream region organizing BtrQ, BtrW, BtrX, BtrY, and BtrZ in the same transcriptional direction and sequential genetic arrangement, and a downstream region organizing various proteins based on BtrT, BtrR2, BtrU, and BtrR1. Our study provides insights into the reclassification of B. vitellinus NBRC 13296 to P. chitinolyticus and suggests the need for continued studies on butirosin biosynthesis from an enzymatic perspective.

Funder

National Institute of Biological Resources

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3