Comparative High-Throughput Sequencing Analysis of the Bacterial Community Associated with the Rhizosphere of Date Palm (Phoenix dactyllifera L.) Irrigated with Treated Wastewater and Groundwater

Author:

Kouadri Fayza1

Affiliation:

1. Faculty of Pharmacy, Middle East University, Amman 11831, Jordan

Abstract

Water scarcity is a major agricultural issue in most arid and semi-arid regions of the world. Alternative water supplies, such as the reuse of wastewater for agricultural irrigation, have been introduced. However, little is known about their impact on the soil and rhizosphere microbiomes that receive irrigation. Therefore, this work evaluates the impact of treated wastewater (TWW) irrigation on the soil and rhizosphere bacterial communities of date palms in Al Madinah, Saudi Arabia. In this study, metagenomic DNA from the rhizosphere of the date palm was sequenced using Illumina high-throughput sequencing. According to the observed OTUs, Chao1 richness estimations, and Shannon diversity values, soils from groundwater-irrigated date palms showed higher microbial diversity than did soils from TWW-irrigated date palms. A total of 569 OTUs were generated; most of them (97.3%) were assigned into 15 different phyla, whereas 2.7% were marked as unclassified. DNA sequence analysis of the WWT-irrigated rhizosphere showed that the most abundant phyla were Firmicutes (43.6%), Bacteroidetes (17.3%), Proteobacteria (15.2%), and Actinobacteria (14.6%), representing more than 90.7% of the total community, while the soil of the rhizosphere irrigated with GW was dominated by Actinobacteria (44.1%), Proteobacteria (23.4%), Firmicutes (15.5%), and Gemmatimonadetes (4.9%). The most frequently observed species in the two soils were also different. The dominant species in TWW-irrigated soil was Planococcus plakortidis, which is prevalent in saline and moderately saline habitats and can play an important ecological role. The GW-irrigated rhizosphere exhibited higher levels of biocontrol bacteria, particularly Nocardioides mesophilus. These results provide a comprehensive understanding and insights into the population dynamics and microbiome of date palm rhizosphere. The findings show that the irrigation water quality has a significant impact on the microbiome composition. Identifying the microbial diversity is the first step toward determining the best way to use TWW in irrigation.

Publisher

MDPI AG

Reference65 articles.

1. Degree of Wastewater Treatment versus Types of Reuses: Case Study, Saudi Arabia;Aburizaiza;Glob. Nest J.,2016

2. Comparative Metagenomic Analysis of Microbial Taxonomic and Functional Variations in Untreated Surface and Reclaimed Waters Used in Irrigation Applications;Chopyk;Water Res.,2020

3. Reuse of Effluent Water-Benefits and Risks;Toze;Agric. Water Manag.,2006

4. Irrigation with Treated Wastewater: Effects on Soil, Lettuce (Lactuca sativa L.) Crop and Dynamics of Microorganisms;Castro;J. Environ. Sci. Health—Part A Toxic/Hazardous Subst. Environ. Eng.,2009

5. Impacts of Aquaculture Wastewater Irrigation on Soil Microbial Functional Diversity and Community Structure in Arid Regions;Chen;Sci. Rep.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3