Keratinocytes and Activation of TREM-1 Pathway in Cutaneous Leishmaniasis Lesions

Author:

Nunes SaraORCID,Ampuero Mariana Rosa,Bonyek-Silva ÍcaroORCID,Lima Reinan,Lima Filipe RochaORCID,Arruda Sérgio Marcos,Khouri RicardoORCID,Oliveira Pablo Rafael SilveiraORCID,Barral Aldina,Boaventura Viviane Sampaio,Brodskyn Cláudia Ida,Tavares Natalia Machado

Abstract

Triggering Receptor Expressed on Myeloid Cells 1 (TREM-1) amplifies the immune response, operating synergistically with Toll-Like Receptors (TLRs) in the production of inflammatory mediators. TREM-1 signaling depends on the adapter protein DAP12, which results in the activation of NFkB, the expression of inflammatory genes, and the release of antimicrobial peptides, such as Beta-defensin 2. We evaluated the activation of the TREM-1 signaling pathways in Cutaneous Leishmaniasis (CL) caused by Leishmania braziliensis and linage human keratinocytes exposed to these parasites since the host immune response against Leishmania plays a critical role in promoting parasite killing but also participates in inflammation and tissue damage. We analyzed publicly available transcriptome data from the lesions of CL patients. In the CL biopsies, we found increased expression of the molecules involved in the TREM-1 pathway. We then validated these findings with RT-qPCR and immunohistochemistry in newly obtained biopsies. Surprisingly, we found a strong labeling of TREM-1 in keratinocytes, prompting the hypothesis that increased TREM-1 activation may be the result of tissue damage. However, increased TREM-1 expression was only seen in human lineage keratinocytes following parasite stimulation. Moreover, no up-regulation of TREM-1 expression was observed in the skin lesions caused by other non-infectious inflammatory diseases. Together, these findings indicate that L. braziliensis (Lb) induces the expression of the TREM-1 receptor in tissue keratinocytes regardless of tissue damage, suggesting that non-immune skin cells may play a role in the inflammatory response of CL.

Funder

Fundação de Amparo à Pesquisa do Estado da Bahia

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3