Insights on Cadmium Removal by Bioremediation: The Case of Haloarchaea

Author:

Vera-Bernal Mónica,Martínez-Espinosa Rosa MaríaORCID

Abstract

Although heavy metals are naturally found in the environment as components of the earth’s crust, environmental pollution by these toxic elements has increased since the industrial revolution. Some of them can be considered essential, since they play regulatory roles in different biological processes; but the role of other heavy metals in living tissues is not clear, and once ingested they can accumulate in the organism for long periods of time causing adverse health effects. To mitigate this problem, different methods have been used to remove heavy metals from water and soil, such as chelation-based processes. However, techniques like bioremediation are leaving these conventional methodologies in the background for being more effective and eco-friendlier. Recently, different research lines have been promoted, in which several organisms have been used for bioremediation approaches. Within this context, the extremophilic microorganisms represent one of the best tools for the treatment of contaminated sites due to the biochemical and molecular properties they show. Furthermore, since it is estimated that 5% of industrial effluents are saline and hypersaline, halophilic microorganisms have been suggested as good candidates for bioremediation and treatment of this kind of samples. These microorganisms, and specifically the haloarchaea group, are of interest to design strategies aiming the removal of polluting compounds due to the efficiency of their metabolism under extreme conditions and their significant tolerance to highly toxic compounds such as heavy metals, bromate, nitrite, chlorate, or perchlorate ions. However, there are still few trials that have proven the bioremediation of environments contaminated with heavy metals using these microorganisms. This review analyses scientific literature focused on metabolic capabilities of haloarchaea that may allow these microbes to tolerate and eliminate heavy metals from the media, paying special attention to cadmium. Thus, this work will shed light on potential uses of haloarchaea in bioremediation of soils and waters negatively affected by heavy metals, and more specifically by cadmium.

Funder

Ministerio de Economía y Competitividad

Universidad de Alicante

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,Microbiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3