Microbial Diversity and Nitrogen Cycling in Peat and Marine Soils: A Review

Author:

Soratur Akshatha1,Venmathi Maran Balu Alagar23ORCID,Kamarudin Ahmad Syazni3ORCID,Rodrigues Kenneth Francis4

Affiliation:

1. Department of Ocean Studies and Marine Biology, Pondicherry Central Government University, Port Blair 744103, Andaman and Nicobar, India

2. Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan

3. School of Animal Science, Aquatic Science and Environment, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia

4. Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia

Abstract

Nitrogen is an essential nutrient for living organisms in peat and marine soils, and its transformation within the soil matrix is a complex process mediated by various microbes that inhabit these ecological niches. The metabolism of nitrogen is governed by microbially mediated biogeochemical transformations, such as nitrification, anammox, and denitrification, which contribute to the assimilated pool of nitrogen and fixed nitrogen loss. One of the major challenges facing the field of peat and marine microbiology is the lack of understanding of the correlation between ecosystem-driven nitrogen transformation and microbial diversity. This is crucial because of growing concerns regarding the impacts of human-induced activities and global climate change on microbial nitrogen-cycling processes in peat and marine soils. Thus, this review aimed to provide a comprehensive overview of the current understanding of the microbial communities involved in peat and marine nitrification, anammox, and denitrification; the factors influencing the niche differentiation and distribution of the main functional components; the genes involved; and the main effects of human-induced activities and global climate change on the peat and marine nitrogen cycle. The implications of this review will facilitate an understanding of the complex mechanisms associated with ecosystem function in relation to nitrogen cycling, the role of peat and marine soils as carbon sinks, pollution remediation using naturally occurring populations of diverse microbes, and the development of policies to mitigate the effects of anthropogenic influences in peat and marine soils.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3