The Effect of Conserved Histidine on the Proximity of Fe-S Clusters in Adenosine-5′-Phosphosulfate Reductases from Pseudomonas aeruginosa and Enteromorpha intestinalis

Author:

Chung Jung-Sung12ORCID,Kim Sung-Kun3ORCID,Leustek Thomas4

Affiliation:

1. Department of Agronomy, Gyeongsang National University, Jinju 52828, Republic of Korea

2. Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea

3. Department of Natural Sciences, Northeastern State University, 600 North Grand Avenue, Tahlequah, OK 74464, USA

4. Biotechnology Center for Agriculture and the Environment, Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA

Abstract

This study investigates the impact of conserved histidine (His) residue mutations on the adenosine 5′-phosphosulfate (APS) reductase enzymes Pseudomonas aeruginosa APR (PaAPR) and Enteromorpha intestinalis APR (EiAPR), focusing on the effects of His-to-alanine (Ala) and His-to-arginine (Arg) substitutions on enzyme activity, iron–sulfur [4Fe-4S] cluster stability, and APS binding affinity. Using recombinant His-tagged wild-types (WTs) and variants expressed in Escherichia coli, analyses revealed that both PaAPR and EiAPR enzymes exhibit a distinct absorption peak associated with their [4Fe-4S] clusters, which are critical for their catalytic functions. Notably, the His-to-Ala variants displayed reduced enzymatic activities and lower iron and sulfide contents compared to their respective WTs, suggesting alterations in the iron–sulfur cluster ligations and thus affecting APS reductase catalysis. In contrast, His-to-Arg variants maintained similar activities and iron and sulfide contents as their WTs, highlighting the importance of a positively charged residue at the conserved His site for maintaining structural integrity and enzymatic function. Further kinetic analyses showed variations in Vmax and Km values among the mutants, with significant reductions observed in the His-to-Ala variants, emphasizing the role of the conserved His in enzyme stability and substrate specificity. This study provides valuable insights into the structural and functional significance of conserved His residues in APS reductases, contributing to a better understanding of sulfur metabolism and its regulation in bacterial and plant systems. Future investigations into the structural characterization of these enzymes and the exploration of other critical residues surrounding the [4Fe-4S] cluster are suggested to elucidate the complete mechanism of APS reduction and its biological implications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3