Molecular Ecological Network Structure and Potential Function of the Bacterial Community in the Soil Profile under Indigenous Tree Plantations in Subtropical China

Author:

Qin Lin1ORCID,Wang Yufeng1,Ming Angang23,Xi Shouhong1,Xiao Zhirou1,Teng Jinqian1,Tan Ling1

Affiliation:

1. Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China

2. Experimental Centre of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, China

3. Guangxi Youyiguan Forest Ecosystem Research Station, Pingxiang 532600, China

Abstract

The soil profile is a strong and complex physicochemical gradient that greatly affects bacterial community structure and function between soil layers. However, little is known about molecular ecological network structure and bacterial community function under differing soil profiles in planted forests. Four typical native tree species (Pinus massoniana Lamb., Castanopsis hystrix Miq., Mytilaria laosensis Lec., and Michelia macclurei Dandy) plantations were selected from subtropical China as the research object. We evaluated molecular ecological network structure as well as potential function of the soil bacterial community at different soil depths (0–20, 20–40, and 40–60 cm) within native tree plantations. Our results showed that (1) compared to the topsoil (0–20 cm), the bacterial molecular ecological network scale increased within the middle layer (20–40 cm) and the subsoil (40–60 cm), and the interaction between species was stronger; (2) module hubs and connectors were the key bacterial groups in each soil layer and increased with increasing soil depth; (3) the dominant functional groups of the bacterial communities in each soil layer were chemoheterotrophy, aerobic chemoheterotrophy, cellulolysis, ureolysis, nitrogen fixation, and nitrate reduction, and they were related to soil carbon and nitrogen cycling; and (4) the different molecular ecological network structures along with relative bacterial functional group abundances among diverse soil layers were mainly affected by soil organic carbon (SOC), NO3−-N, NH4+-N, available phosphorus (AP), and total phosphorus (TP). Our study provides a theoretical foundation for bacterial community structure together with function within soil profiles of native tree plantations in subtropical regions.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation of Guangxi Province

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3