Automatic Methodology for Forest Fire Mapping with SuperDove Imagery

Author:

Rodríguez-Esparragón Dionisio1ORCID,Gamba Paolo2ORCID,Marcello Javier1ORCID

Affiliation:

1. Instituto de Oceanografía y Cambio Global, IOCAG, Unidad Asociada ULPGC-CSIC, 35017 Las Palmas de Gran Canaria, Spain

2. Department of Electrical, Biomedical and Computer Engineering, University of Pavia, 27100 Pavia, Italy

Abstract

The global increase in wildfires due to climate change highlights the need for accurate wildfire mapping. This study performs a proof of concept on the usefulness of SuperDove imagery for wildfire mapping. To address this topic, we present an automatic methodology that combines the use of various vegetation indices with clustering algorithms (bisecting k-means and k-means) to analyze images before and after fires, with the aim of improving the precision of the burned area and severity assessments. The results demonstrate the potential of using this PlanetScope sensor, showing that the methodology effectively delineates burned areas and classifies them by severity level, in comparison with data from the Copernicus Emergency Management Service (CEMS). Thus, the potential of the SuperDove satellite sensor constellation for fire monitoring is highlighted, despite its limitations regarding radiometric distortion and the absence of Short-Wave Infrared (SWIR) bands, suggesting that the methodology could contribute to better fire management strategies.

Funder

Organismo Autónomo Parques Nacionales

Ministry of Universities

Publisher

MDPI AG

Reference53 articles.

1. Global Temperature Change;Hansen;Proc. Natl. Acad. Sci. USA,2006

2. Fire in the Air: Biomass Burning Impacts in a Changing Climate;Keywood;Crit. Rev. Environ. Sci. Technol.,2013

3. Climate Change and Forest Fires;Flannigan;Sci. Total Environ.,2000

4. Fire Effects on Soil Aggregation: A Review;Arcenegui;Earth Sci. Rev.,2011

5. Waring, R., and Steven, W. (1985). Running Forest Ecosystems: Analysis at Multiple Scales, Elsevier.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3