Author:
Zhou Jingjing,Dian Yuanyong,Wang Xiong,Yao Chonghuai,Jian Yongfeng,Li Yuan,Han Zeming
Abstract
Canopy cover is an important vegetation attribute used for many environmental applications such as defining management objectives, thinning and ecological modeling. However, the estimation of canopy cover from high spatial resolution imagery is still a difficult task due to limited spectral information and the heterogeneous pixel values of the same canopy. In this paper, we compared the capacity of two high spatial resolution sensors (SPOT6 and GF2) using three ensemble learning models (Adaptive Boosting (AdaBoost), Gradient Boosting (GDBoost), and random forest (RF)), to estimate canopy cover (CC) in a Chinese northern subtropics forest. Canopy cover across 97 plots was measured across 41 needle forest plots, 24 broadleaf forest plots, and 32 mixed forest plots. Results showed that (1) the textural features performed more importantly than spectral variables according to the number of variables in the top ten predictors in estimating canopy cover (CC) in both SPOT6 and GF2. Moreover, the vegetation indices in spectral variables had a lower relative importance value than the band reflectance variables. (2) GF2 imagery outperformed SPOT6 imagery in estimating CC when using the ensemble learning model in our data. On average across the models, the R2 was almost 0.08 higher for GF2 over SPOT6. Likewise, the average RMSE and average MAE were 0.002 and 0.01 lower in GF2 than in SPOT6. (3) The ensemble learning model showed good results in estimating CC, yet the different models performed a little differently in the results. Additionally, the GDBoost model performed the best of all the ensemble learning models with R2 = 0.92, root mean square error (RMSE) = 0.001 and mean absolute error (MAE) = 0.022.
Funder
National Key Research and Development Program
National Natural Science Foundation of China
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献