Abstract
Polymer-dispersed liquid crystal (PDLC) and polymer-stabilized liquid crystal (PSLC) are two typical liquid crystal (LC)/polymer composites. PDLCs are usually prepared by dispersing LC droplets in a polymer matrix, while PSLC is a system in which the alignment of LC molecules is stabilized by interactions between the polymer network and the LC molecules. In this study, a new material system is promoted to construct a coexistence system of PDLC and PSLC, namely PD&SChLC. In this new material system, a liquid-crystalline vinyl-ether monomer (LVM) was introduced to a mixture containing cholesteric liquid crystal (ChLC) and isotropic acrylate monomer (IAM). Based on the different reaction rates between LVM and IAM, the PD&SChLC architecture was built using a stepwise UV-initiated polymerization. During the preparation of the PDS&ChLC films, first, the mixture was irradiated with UV light for a short period of time to induce the free radical polymerization of IAMs, forming a phase-separated microstructure, PDLC. Subsequently, an electric filed was applied to the sample for long enough to induce the cationic polymerization of LVMs, forming the homeotropically-aligned polymer fibers within the ChLC domains, which are similar to those in a PSLC. Based on this stepwise UV-initiated radical/cationic polymerization, a PD&SChLC film with the advantages of a relatively low driving voltage, a fast response time, and a large-area processability is successful prepared. The film can be widely used in flexible displays, smart windows, and other optical devices.
Funder
National Natural Science Foundation of China
Joint Fund of the Ministry of Education for Equipment Pre Reasearch
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献