Author:
Tokumoto Yuki,Fujiwara Riku,Edagawa Keiichi
Abstract
Topological insulators (TIs) have a bulk bandgap and gapless edge or surface states that host helically spin-polarized Dirac fermions. Theoretically, it has been predicted that gapless states could also be formed along dislocations in TIs. Recently, conductivity measurements on plastically deformed bismuth antimony (Bi1−xSbx) TIs have revealed excess conductivity owing to dislocation conduction. For further application of them, fundamental study on dislocations in TIs is indispensable. Dislocations controlled based on fundamental studies could potentially be useful not only for experimental investigations of the dislocation properties but also for diverse device applications. In the present study, Bi1−xSbx TI single crystals were fabricated by a zone-melting method. The crystals were plastically deformed at room temperature. The resultant dislocations were observed by transmission electron microscopy (TEM). It was found that high-density dislocations with the Burgers vector satisfying the condition for the formation of gapless states were successfully introduced. The dislocations were mostly of edge type with lengths on the order of more than a few micrometers.
Funder
Japan Society for the Promotion of Science
Iketani Science and Technology Foundation
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献