Abstract
Low emissivity glass (low-e glass), which is often used in energy-saving buildings, has high thermal resistance and visible light transmission. Heavily doped wide band gap semiconductors like aluminum-doped zinc oxide (AZO) and tin-doped indium oxide (ITO) have these properties, especially after certain treatment. In our experiments, in-line sputtered AZO and ITO bilayer (AZO/ITO) films on glass substrates were prepared first. The deposition of AZO/ITO films was following by annealing in hydrogen/nitrogen (H2/N2) plasma with different N2 flows. The structure and optical and electrical properties of AZO/ITO films were surveyed. Experiment results indicated that N2 flow in H2/N2 plasma annealing of AZO/ITO films slightly modified the structure and electrical properties of AZO/ITO films. The X-ray diffraction peak corresponding to zinc oxide (002) crystal plane slightly shifted to a higher angle and its full width at half maximum decreased as the N2 flow increased. The electrical resistivity and the emissivity reduced for the plasma annealed AZO/ITO films when the N2 flow was raised. The optimum H2/N2 gas flow was 100/100 for plasma annealed AZO/ITO films in this work for low emissivity application. The emissivity and average visible transmittance for H2/N2 = 100/100 plasma annealed AZO/ITO were 0.07 and 80%, respectively, lying in the range of commercially used low emissivity glass.
Funder
Ministry of Science and Technology
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献