Lignin Electrolysis at Room Temperature on Nickel Foam for Hydrogen Generation: Performance Evaluation and Effect of Flow Rate

Author:

Khalid MohmmadORCID,De Biswajit SamirORCID,Singh Aditya,Shahgaldi Samaneh

Abstract

Water electrolysis is a thermodynamically energy-intensive process. One approach employed to make water electrolysis kinetically favorable is replacing the oxygen evolution reaction (OER) at the anode by facile electrooxidation of biomass-feedstocks such as ethanol, methanol, glycerol, and lignin due to the presence of readily oxidizable functional groups. In this work, we report a simplistic approach for hydrogen generation by lignin electrolysis, utilizing a low-cost nickel foam as both anode and cathode sandwiched with hydroxide ion (OH-) exchange membrane in a 3D printed reactor. The performance of the lignin electrolysis was analyzed under various flow rates of anolyte (lignin)/catholyte (KOH) in the anode and cathode chambers. The lignin electrolysis outcompetes traditional water electrolysis by achieving higher current density in the applied voltage range from 0 to 2.5 V at room temperature. The charge transfer resistance for the lignin electrolysis is lower than that of the water electrolysis characterized by impedance spectroscopy. The enhanced current density from the lignin electrolysis at low overvoltage has been presumed from the oxidation of reactive functional groups present in the lignin, facilitating faster electron transfer. Moreover, the hydrogen production rate calculated from the chronoamperometry test of the lignin electrolysis is 2.7 times higher than that of water electrolysis. Thus, the electrochemical oxidation of lignin can potentially lower the capital cost of renewable hydrogen production.

Funder

Canada Research Chairs Program

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3