Abstract
Photoelectrocatalytic oxidation of methanol, ethylene glycol, glycerol, and 5,6,7,8-tetrahydro-2-naphthol on thin-film nanocrystalline hematite electrodes fabricated by electrochemical deposition and promoted with spin-coated titanium has been studied. It is shown that the modification of hematite transforms it into material exhibiting high activity in the photoelectrochemical process of substrate oxidation upon illumination with light in the visible region of the spectrum. The highest activity is observed in the reaction of photoelectrocatalytic oxidation of glycerol. Results of intensity-modulated photocurrent spectroscopy (IMPS) suggest that the effect is due to an increased rate of charge transfer in the process of photoelectro-oxidation and efficient suppression of the recombination of generated electron-hole pairs. Therefore, thin-film photoanodes based on modified hematite are promising for practical application in the photooxidation of glycerol, a by-product of biofuel production, as well as in the photoelectrochemical degradation of other organic pollutants, including those formed during the production of pharmaceuticals.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献