Abstract
Different transition metals (Cr/Fe/Mn/Co) derived catalysts supported on γ-Al2O3 were prepared by the isovolumetric impregnation method for catalytic ozonation of acetone (C3H6O), and their catalytic activities under industrial complex conditions were investigated. Among them, CrOx/γ-Al2O3 catalyst with Cr loading of 1.5%, abbreviated as Cr1.5%, achieved the best activity, benefitting from its larger surface area, larger proportion of Cr6+/Cr, more chemically desorbed oxygen species Oβ, appropriate acidity, and superiority of low-temperature reducibility. Simulated industrial conditions were used to investigate the applicability of Cr1.5% catalysts for catalytic ozonation of acetone. Results illustrated that the optimum temperature range was 120–140 °C, with molar ratio O3/C3H6O > 6. Different C3H6O initial concentrations had less effect over the activity of Cr1.5% catalysts, with little residual ozone, confirming the applicability of Cr1.5% catalysts in industrial application. The effects of sulfur/water vapor on catalytic activity were also investigated, and satisfactory resistance to sulfur or water vapor individually was obtained. Finally, in-situ DRIFTS measurement was carried out, to explore and illustrate mechanisms of acetone catalytic ozonation pathways and sulfur/water poisoning.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献