Electronic Tuning of Sterically Encumbered 2-(Arylimino)Pyridine-Nickel Ethylene Polymerization Catalysts by Para-Group Modification

Author:

Hosseinzadeh ZahraORCID,Liu MingORCID,Zhang QiuyueORCID,Liang Tongling,Solan Gregory A.ORCID,Ma YanpingORCID,Sun Wen-HuaORCID

Abstract

A collection of five related 2-(arylimino)pyridines, 2-{(2,6-(CH(C6H4-p-F)2)2-4- RC6H2)N=CMe}C5H4N, each ortho-substituted with 4,4′-difluorobenzhydryl groups but distinct in the electronic properties of the para-R substituent (R = Me L1, Et L2, i-Pr L3, F L4, OCF3 L5), were prepared and combined with (DME)NiBr2 to form their corresponding LNiBr2 complexes, Ni1–Ni5, in high yields. All the complexes were characterized by FT-IR, 19F NMR spectroscopy and elemental analysis, while Ni5 was additionally the subject of an X-ray determination, revealing a bromide-bridged dimer. The molecular structure of bis-ligated (L4)2NiBr2 (Ni4’) was also determined, the result of ligand reorganization having occurred during attempted crystallization of Ni4. On activation with either EtAlCl2 or MMAO, Ni1–Ni5 exhibited high catalytic activities (up to 4.28 × 106 g of PE (mol of Ni)−1 h−1 using EtAlCl2) and produced highly branched polyethylene exhibiting low molecular weight (Mw range: 2.50–6.18 kg·mol−1) and narrow dispersity (Mw/Mn range: 2.21–2.90). Notably, it was found that the type of para-R group impacted on catalytic performance with Ni5 > Ni4 > Ni3 > Ni1 > Ni2 for both co-catalysts, underlining the positive influence of electron withdrawing substituents. Analysis of the structural composition of the polyethylene by 1H and 13C NMR spectroscopy revealed the existence of vinyl-end groups (–CH=CH2) and high levels of internal unsaturation (–CH=CH–) (ratio of vinylene to vinyl, range: 3.1:1–10.3:1) along with various types of branch (Me, Et, Pr, Bu, 1,4-paired Me, 1,6-paired Me and LCBs). Furthermore, reaction temperature was shown to greatly affect the end group type, branching density, molecular weight and in turn the melting points of the resulting polyethylenes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3