Two-Dimensional Fe-N-C Nanosheets for Efficient Oxygen Reduction Reaction

Author:

Wu Xin,Xie Wenke,Liu Xuanhe,Liu XiaomingORCID,Zhao Qinglan

Abstract

Fe-N-doped carbon (Fe-N-C)-based electrocatalysts are considered to be promising alternatives to replace Pt-based catalysts for oxygen reduction reactions (ORR). Here, we reported a simple and effective approach to prepare Fe-N-C-based electrocatalysts with the shape of two-dimensional nanosheets (termed Fe/NCNSs) to enhance the ORR performance. Fe/NCNSs were prepared by the calcination of Fe/Zn dual-metal ZIFs nanosheets as precursors. Benefiting from its higher specific surface area, electrochemically active surface area, and proportion of pyridinic N and Fe-N, the optimized Fe/NCNS showed excellent ORR performance both in acidic (E1/2 = 0.725 V vs. RHE) and alkaline (E1/2 = 0.865 vs. RHE) media, being 23 mV more negative and 24 mV more positive than that of a commercial Pt/C. The optimized Fe/NCNS also exhibited long durability. In addition, the Zn-air battery with Fe/NCNS-1 and RuO2 as the air catalyst exhibited high power density (1590 mW cm−2 at a current density of 2250 mA cm−2) and superior charging/discharging durability.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Hong Kong Postdoctoral Fellowship Scheme

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3