Abstract
Fabrication of metal nanostructures using natural products has attracted scientists and researchers due to its renewable and environmentally benign availability. This work has prepared an eco-friendly, low-cost, and rapid colorimetric sensor of silver nanoparticles using tree gum as a reducing and stabilizing agent. Several characterization techniques have been exploited to describe the synthesized nanosensor morphology and optical properties. Ultraviolet−Visible (UV−Vis) spectroscopy has been used for monitoring the localized plasmon surface area. High-resolution transmission electron microscopy (HR-TEM) illustrated the size and shape of silver nanoparticles. X-ray diffraction spectra showed the crystallography and purity of the product. Silver nanoparticles decorated with almond gum molecules (AgNPs@AG) demonstrated high sensitivity and colorimetric detection of mercury ions in water samples. The method is based on the aggregation of AgNPs and the disappearing yellow color of AgNPs via a spectrophotometer. The detection limit of this method was reported to be 0.5 mg/L. This work aimed to synthesize a rapid, easy-preparation, eco-friendly, and efficient naked-eye colorimetric sensor to detect toxic pollutants in aqueous samples.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献