Abstract
Heavy oil resources are attracting considerable interest in terms of sustaining energy demand. However, the exploitation of such resources requires deeper understanding of the processes occurring during their development. Promising methods currently used for enhancing heavy oil recovery are steam injection methods, which are based on aquathermolysis of heavy oil at higher temperatures. Regardless of its efficiency in the field of in situ upgrading of heavy oil, this technique still suffers from energy consumption and inefficient heat transfer for deeper reservoirs. During this study, we have developed a molybdenum-based catalyst for improving the process of heavy oil upgrading at higher temperature in the presence of water. The obtained catalyst has been characterized by a set of physico-chemical methods and was then applied for heavy oil hydrothermal processing in a high-pressure reactor at 200, 250 and 300 °C. The comparative study between heavy oil hydrothermal upgrading in the presence and absence of the obtained molybdenum-based oil soluble catalysts has pointed toward its potential application for heavy oil in situ upgrading techniques. In other words, the used catalyst was able to reduce heavy oil viscosity by more than 63% at 300 °C. Moreover, our results have demonstrated the efficiency of a molybdenum-based catalyst in improving saturates and light hydrocarbon content in the upgraded oil compared to the same quantity of these fractions in the initial oil and in the non-catalytically upgraded oil at similar temperatures. This has been explained by the significant role played by the used catalyst in destructing asphaltenes and resins as shown by XRD, elemental analysis, and gas chromatography, which confirmed the presence of molybdenum sulfur particles in the reaction medium at higher temperatures, especially at 300 °C. These particles contributed to stimulating hydrodesulphurization, cracking and hydrogenation reactions by breaking down the C-heteroatom bonds and consequently by destructing sphaltenes and resins into smaller fractions, leading to higher mobility and quality of the upgraded oil. Our results add to the growing body of literature on the catalytic upgrading of heavy oil in the presence of transition metal particles.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Reference51 articles.
1. Our Energy Future: Resources, Alternatives and the Environment;Ngô,2016
2. Experience of Development of Shallow Deposits of Heavy Oil;Maganov;Oil Gas J. Russ.,2015
3. The Opportunities and Limits of Bioenergy for a Sustainable Energy System in Turkey;Peker;Master’s Thesis,2016
4. Oil dispersed nickel-based catalyst for catalytic upgrading of heavy oil using supercritical water
5. Heavy Oils and Residua;Ancheyta,2007
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献