Highly Selective Gas-Phase Catalytic Hydrogenation of Acetone to Isopropyl Alcohol

Author:

Al-Rabiah Abdulrahman A.ORCID,Boz Ismail,Akhmedov Vagif M.,Mostafa Mohamed Mokhtar M.,Bagabas Abdulaziz A.ORCID

Abstract

Current industrial synthesis procedures of isopropyl alcohol (IPA), by the direct or indirect hydration of propylene in the gas or liquid phase, suffer from the low conversion of propylene, the requirement for high pressure, and the harmfulness to the environment. In this context, we report a single-step, gas-phase process for the green synthesis of IPA via acetone hydrogenation, in a fixed-bed reactor, under ambient pressure and within a temperature range of 100–350 °C. Composite catalysts with various ratios of ruthenium nanoparticles supported on activated charcoal and nano-zinc oxide (n-Ru/AC/n-ZnO) were used. Catalytic activity and selectivity were functions of n-Ru/AC/n-ZnO loading ratios, reaction temperature, and the hydrogen to acetone molar ratio. The composite catalysts were characterized by X-ray powder diffraction (XRPD), transmission electron microscopy (TEM), hydrogen temperature-programmed reduction (H2-TPR) analysis, and nitrogen physisorption. High yields of IPA were obtained over 3n-Ru/AC/2n-ZnO) catalyst, which showed the highest selectivity of 98.7% toward isopropyl alcohol and acetone conversion of 96.0% under a hydrogen to acetone mole ratio of 1.5 at 100 °C. Reaction rates, calculated from the model equation, were in reasonable agreement with those measured experimentally. The apparent activation energy (Ea) value for acetone hydrogenation was found to be 17.2 kJ/mol. This study proved that immobilized Ru catalysts were potential superior catalysts for the selective hydrogenation of acetone to IPA in exceptionally mild green synthesis conditions.

Funder

King Abdulaziz City for Science and Technology

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3