Immobilization of Glucose Oxidase on Glutathione Capped CdTe Quantum Dots for Bioenergy Generation

Author:

Lozano-López Daniel,Galván-Valencia Marisol,Rojas-de Soto Ivone,Escalona-Villalpando Ricardo A.ORCID,Ledesma-García JanetORCID,Durón-Torres SergioORCID

Abstract

An efficient immobilization of Glucose oxidase (GOx) on an appropriate substrate is one of the main challenges of developing fuel cells that allow energy to be obtained from renewable substrates such as carbohydrates in physiological environments. The research importance of biofuel cells relies on their experimental robustness and high compatibility with biological organisms such as tissues or the bloodstream with the aim of obtaining electrical energy even from living systems. In this work, we report the use of 5,10,15,20 tetrakis (1-methyl-4-pyridinium) porphyrin and glutathione capped CdTe Quantum dots (GSH-CdTeQD) as a support matrix for the immobilization of GOx on carbon surfaces. Fluorescent GSH-CdTeQD particles were synthesized and their characterization by UV-Vis spectrophotometry showed a particle size between 5–7 nm, which was confirmed by DLS and TEM measurements. Graphite and Toray paper electrodes were modified by a drop coating of porphyrin, GSH-CdTeQD and GOx, and their electrochemical activity toward glucose oxidation was evaluated by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Additionally, GOx modified electrode activity was explored by scanning electrochemical microscopy, finding that near to 70% of the surface was covered with active enzyme. The modified electrodes showed a glucose sensitivity of 0.58 ± 0.01 μA/mM and an apparent Michaelis constant of 7.8 mM. The addition of BSA blocking protein maintained the current response of common interferent molecules such as ascorbic acid (AA) with less than a 5% of interference percentage. Finally, the complex electrodes were employed as anodes in a microfluidic biofuel cell (μBFC) in order to evaluate the performance in energy production. The enzymatic anodes used in the μBFC allowed us to obtain a current density of 7.53 mAcm−2 at the maximum power density of 2.30 mWcm−2; an open circuit potential of 0.57 V was observed in the biofuel cell. The results obtained suggest that the support matrix porphyrin and GSH-CdTeQD is appropriate to immobilize GOx while preserving the enzyme’s catalytic activity. The reported electrode arrangement is a viable option for bioenergy production and/or glucose quantification.

Funder

Mexican Council of Science and Technology

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3