Abstract
MFC is a promising technology that can be used for simultaneous electricity generation and wastewater treatment. Power energy generation of a ferroelectric cathodic ceramic, Li0.95Ta0.76Nb0.19Mg0.15O3 (LTNMg), has been measured in microbial fuel cells, integrating a single chamber fed by industrial wastewater (CODinitial = 471 mg L−1, and pHinitial = 7.24 at T = 27 °C). In this process, the mixed multicomponent oxide material has been prepared and characterized by XRD, PSD, TEM, and UV-Vis spectroscopy. The catalytic activity has been investigated by COD determination, analysis of heavy metals, and polarization measurement. The results show a high COD reduction efficiency, which reaches 95.70% after a working time of 168 h with a maximal power density of 228 mW m−2. In addition, the maximum value of generated voltage in the open-circuit potential (OCP) of this MFC configuration has been increased from 340 mV in the absence of a light source to 470 mV under irradiation, indicating the presence of a promoting photocatalytic effect of LTNMg, which improved the process of the cathodic electron transfer inside the MFC device.
Funder
Moroccan Ministry of Higher Education, Scientific Research, and Innovation, and the OCP Foundation
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献