Thermochemical Properties of High Entropy Oxides Used as Redox-Active Materials in Two-Step Solar Fuel Production Cycles

Author:

Le Gal Alex,Vallès Marielle,Julbe AnneORCID,Abanades StéphaneORCID

Abstract

The main challenges and obstacles to the development of hydrogen/carbon monoxide production from the splitting of water/carbon dioxide through two-step solar thermochemical cycles are strongly related to material concerns. Ineed, ceria is the main benchmark redox material used in such processes because it provides very good oxidation reaction kinetics, reactions reversibility and thermal cycling stability. This is at the expense of a low reduction yield (non-stoichiometry δ in CeO2-δ) at relatively high temperatures (≥1400 °C), which requires operation at low oxygen partial pressures during the reduction step. Hence, the specific fuel output per mass of redox material, i.e., the amount of H2/CO produced per cycle, remains low, thereby limiting the overall solar-to-fuel conversion efficiency. Perovskites offer larger amounts of fuel produced per cycle but the reaction kinetics are slow. This study addresses the thermochemical investigation of a new class of metal oxides, namely high entropy oxides (HEOs), with the aim of improving the specific amount of fuel generated per cycle with good kinetic rates. Different formulations of high entropy oxides were investigated and compared using thermogravimetric analysis to evaluate their redox activity and ability to split CO2 during thermochemical cycles. Among the different formulations tested, five HEOs yielded CO with a maximum specific fuel output of 154 µmol/g per cycle. These materials’ performances exceeded the production yields of ceria under similar conditions but are still far from the production yields reached with lanthanum–manganese perovskites. This new class of materials, however, opens a wide path for research into new formulations of redox-active catalysts comparing favorably with the ceria redox performance for solar thermochemical synthetic fuel production.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference56 articles.

1. EU Hydrogen Policy, Hydrogen as an Energy Carrier for a Climate-Neutral Economy, European Parliamentary Research Service

2. US Department of Energy. Hydrogen Energy Earthshot

3. Japanese Ministerial Council on Renewable Energy, Hydrogen and Related Issues, Basic Hydrogen Strategy

4. Energy Requirements in Production of Hydrogen from Water

5. Drop-in fuels from sunlight and air

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3