Design of Bimetallic PtFe-Based Reduced Graphene Oxide as Efficient Catalyst for Oxidation Reduction Reaction

Author:

Sravani BathinapatlaORCID,Manohara Reddy Yenugu VeeraORCID,Park Jong PilORCID,Venu Manthrapudi,Sarma Loka Subramanyam

Abstract

Oxygen reduction reaction (ORR) is a very important reaction that occurs at the cathodic side in proton exchange membrane fuel cells (PEMFCs). The high cost associated with frequently used Pt-based electrocatalysts for ORR limits the commercialization of PEMFCs. Through bifunctional and electronic effects, theoretical calculations have proved that alloying Pt with a suitable transition metal is likely to improve ORR mass activity when compared to Pt-alone systems. Herein, we demonstrate the preparation of bimetallic Pt–Fe nanoparticles supported on reduced graphene oxide sheets (RGOs) via a simple surfactant-free chemical reduction method. The present method produces PtFe/RGO catalyst particles with a 3.2 nm diameter without agglomeration. PtFe/RGO showed a noticeable positive half-wave potential (0.503 V vs. Ag/AgCl) compared with a commercial Pt/C catalyst (0.352 V vs. Ag/AgCl) with minimal Pt-loading on a glassy carbon electrode. Further, PtFe/RGO showed a higher ORR mass activity of 4.85 mA/cm2-geo compared to the commercial Pt/C (3.60 mA/cm2-geo). This work paves the way for designing noble−transition metal alloy electrocatalysts on RGO supports as high-performance electrocatalysts for ORR application.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korean government

Science and Engineering Research Board (SERB) of the Department of Science and Technology (DST), New Delhi

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3