Solar Light-Induced Photocatalytic Degradation of Ciprofloxacin Antibiotic Using Biochar Supported Nano Bismuth Ferrite Composite

Author:

Mohd Azan Nur Azra Aqilah,Sagadevan Suresh,Mohamed Abdul Rahman,Nor Azazi Amirul Hazwan,Suah Faiz Bukhari MohdORCID,Kobayashi Takaomi,Adnan RohanaORCID,Mohd Kaus Noor HaidaORCID

Abstract

Research on advanced materials for environmental remediation and pollutant degradation is rapidly progressing because of their numerous applications. Biochar is an excellent material support for the catalytic activity of bismuth ferrite (BiFeO3), which is one of the best perovskite-based photocatalysts in this work for diverse pollutant degradation when exposed to direct sunlight. Biochar was produced by pyrolyzing oil palm empty fruit bunches (OPEFBs) and then integrate with BiFeO3 in the presence of cross-linked chitosan to create a BFO/biochar coupled magnetic photocatalyst (CBB). This research was conducted to examine the performance of the photocatalytic activity of CBB towards the degradation of ciprofloxacin antibiotics. To determine the optimal condition, two operational parameters that are photocatalyst dosage and initial pollutant concentrations, were evaluated. The results of the powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope-energy dispersive X-ray (SEM-EDX) analyses confirmed the high purity of the rhombohedral BiFeO3 with a high surface area, as well as the successful coupling of BiFeO3 and biochar at a ratio of 1:1. The most effective conditions for the various variables are 1.5 g/L CBB dosage at 10 ppm with 77.08% photodegradation under direct sunlight for 2 h. Further, a pseudo-first-order kinetic reaction was followed and observed with decreasing k values as the initial concentration increased. This shows that the system performs best at low concentrations. This finding confirms that the catalytic parameters improved the efficiency of photocatalysts with biochar assistance in removing antibiotic pollutants.

Funder

Fundamental Research Grant Scheme

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3