Facile Fabrication of SiO2/Zr Assisted with EDTA Complexed-Impregnation and Templated Methods for Crude Palm Oil to Biofuels Conversion via Catalytic Hydrocracking

Author:

Hasanudin HasanudinORCID,Asri Wan Ryan,Fanani Zainal,Adisti Selvi Julpani,Hadiah Fitri,Maryana Roni,Al Muttaqii Muhammad,Zhu ZongyuanORCID,Machado Nelio TeixeiraORCID

Abstract

Zr-containing SiO2 and their parent catalysts were fabricated with different methods using EDTA chelation and template-assist. The activity of the catalysts was explored in crude palm oil (CPO) hydrocracking, conducted under a continuous system micro-cylindrical reactor. The conversion features and the selectivity towards biofuel products were also examined. The physicochemical of catalysts, such as structure phase, functional groups, surface morphologies, acidity features, and particle size, were investigated. The study showed that the template method promoted the crystalline porous catalysts, whereas the chelate method initiated the non-porous structure. The catalysts’ acidity features of SiO2 and SiO2/Zr were affected by the preparation, which revealed that the EDTA chelate-assisted method provided higher acidity features compared with the template method. The CPO hydrocracking study showed that the SiO2/Zr-CEDTA provided the highest catalytic activity towards the hydrocracking process, with 87.37% of conversion attained with 66.29%.wt of liquid product. This catalyst exhibited selectivity towards bio-jet (36.88%), bio-diesel (31.43%), and bio-gasoline (26.80%). The reusability study revealed that the SiO2/Zr-CEDTA had better stability towards CPO conversion compared with SiO2/Zr-CEDTA, with a low decrease in catalyst performance at three consecutive runs.

Funder

DRPM Ministry of Education, Culture, Research and Technology, Indonesia PDUPT Research

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3