A Novel Shift in the Absorbance Maxima of Methyl Orange with Calcination Temperature of Green Tin Dioxide Nanoparticle-Induced Photocatalytic Activity

Author:

Haq SirajulORCID,Ehsan Rimsha,Menaa FaridORCID,Shahzad Nadia,Din Salah Ud,Shahzad Muhammad ImranORCID,Rehman WajidORCID,Waseem MuhammadORCID,Alrhabi Walaa,Almukhlifi Hanadi A.,Alsharef Sohad Abdulkaleg

Abstract

Background: The photocatalytic degradation of toxic organic compounds has received great attention for the past several years. Dyes, such as methyl orange (MO), are one of the major pollutants which create environmental hazards in the hydrosphere, living organisms and human beings. During photocatalytic degradation, NPs are activated in the presence of UV–Vis radiation which in turn creates a redox environment in the system and behaves as a sensitizer for light-induced redox mechanisms. Tin oxide (SnO2) is one of the prominent, but less investigated, nanomaterials compared to titanium oxide (TiO2) and Zinc oxide (ZnO) nanoparticles (NPs). Methods: Herein, Buxus wallichiana (B. wallichiana) leaf extract was utilized as a reducing and capping agent for the biosynthesis of SnO2 NPs. The effects of the calcination temperature on their photocatalytic, structure and surface properties were then examined. The degree of crystallinity and the crystallite size were determined through X-ray diffraction (XRD) analysis. The pore size and surface area were calculated by Burnett–Emmitt–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods based on nitrogen desorption data. Morphological changes were assessed by scanning electron microscopy (SEM). The optical behavior was analyzed through UV–Vis diffuse reflectance spectroscopy (DRS) data and the band gap subsequently calculated. The photocatalytic efficiency of SnO2 NPs was evaluated by double beam UV–Vis spectrophotometry under the influence of initial MO concentration, catalyst dose and pH of MO solution. The surface functional moieties were identified using Fourier transform infrared (FTIR) spectroscopy. All the calcined SnO2 NPs were used as photocatalysts for the mineralization of MO in aqueous media. Results: The degree of crystallinity and the crystallite size increased with the calcination temperature. The transmittance edge obtained for all the calcined SnO2 NPs shows a maximum absorbance in the visible range (λ-max = 464 nm). Moving toward higher wavelengths, a sudden intense red shift (from 464 nm to 500 nm), attributed to the incorporation of a hydroxyl radical at the ortho-position in the benzene ring associated with the dimethylamine group of MO, was observed in the absorbance of the samples calcined up to 300 °C. The percentage degradation of MO was found to decrease with increasing calcination temperatures. The optimal photocatalytic activity toward MO (15 ppm) in a solution of pH = 6 was obtained with 15 mg SnO2 NPs calcined at 100 °C. Conclusions: UV–Vis absorption spectroscopy demonstrates that the absorption spectra of MO are strongly modified by the calcination temperature. This work opens new avenues for the use of SnO2 NPs as photocatalysts against the degradation of industrial effluents enriched with different dyes.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3