Insight into the Effect of Anionic–Anionic Co-Doping on BaTiO3 for Visible Light Photocatalytic Water Splitting: A First-Principles Hybrid Computational Study

Author:

Goumri-Said SourayaORCID,Kanoun Mohammed BenaliORCID

Abstract

In this research, we thoroughly studied the electronic properties and optical absorption characteristics with double-hole coupling of anions–anion combinations for designing effective photocatalysts for water redox using first-principles methods within the hybrid Heyd–Scuseria–Ernzerhof (HSE06) exchange–correlation formalisms. The findings reveal that the values of formation energy of both the anion mono- and co-doped configurations increase monotonically as the chemical potential of oxygen decreases. The N–N co-doped BaTiO3 exhibits a more favorable formation energy under an O-poor condition compared with other configurations, indicating that N and N pairs are more likely to be synthesized successfully. Interestingly, all the co-doping configurations give a band gap reduction with suitable position for oxygen production and hydrogen evolution. The obtained results demonstrate that all the co-doped systems constitute a promising candidate for photocatalytic water-splitting reactions. Furthermore, the enhanced ability of the anionic-anionic co-doped BaTiO3 to absorb visible light and the positions of band edges that closely match the oxidation-reduction potentials of water suggest that these configurations are viable photocatalysts for visible-light water splitting. Therefore, the wide-band gap semiconductor band structures can be tuned by double-hole doping through anionic combinations, and high-efficiency catalysts for water splitting using solar energy can be created as a result.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3