Abstract
Novel durian-like TiO2@CdS core-shell particles were synthesized through a solvothermal method in ethylenediamine solution and the obtained nanocomposites were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and transmission electron microscopic (TEM) techniques. It can be seen from the characterization that the synthesized core-shell structured particles show uniform size. The possible formation mechanism of TiO2@CdS core-shell particles is also presented schematically. CdS grows on the TiO2 surface in the form of nanorods, turning the TiO2@CdS composite particles into durian-like structures. The durian-like TiO2@CdS core-shell particles prepared in the experiment can overcome the disadvantages of TiO2 and CdS, respectively. They not only produce a higher yield of H2 than pure TiO2; the durian-like TiO2@CdS nanostructures formed at 180 °C for 16 h produced 2.5 times as much H2 as did TiO2, also showing enhanced stability as compared with pure CdS.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献