Interfacial Electronic Rearrangement and Synergistic Catalysis for Alkaline Water Splitting in Carbon-Encapsulated Ni (111)/Ni3C (113) Heterostructures

Author:

Li Xiaoyu,Peng Zhenbo,Jia Dongmei,Wang Yikang,Wu Wenbo,Deng Ping,Xu Mengqiu,Xu Xudong,Jia Gan,Ye Wei,Gao PengORCID

Abstract

The realization of efficient water electrolysis is still blocked by the requirement for a high and stable driving potential above thermodynamic requirements. An Ni-based electrocatalyst, is a promising alternative for noble-metal-free electrocatalysts but tuning its surface electronic structure and exposing more active sites are the critical challenges to improving its intrinsic catalytic activity. Here, we tackle the challenge by tuning surface electronic structures synergistically with interfacial chemistry and crystal facet engineering, successfully designing and synthesizing the carbon-encapsulated Ni (111)/Ni3C (113) heterojunction electrocatalyst, demonstrating superior hydrogen evolution reaction (HER) activities, good stabilities with a small overpotential of −29 mV at 10 mA/cm2, and a low Tafel slope of 59.96 mV/dec in alkaline surroundings, approximating a commercial Pt/C catalyst and outperforming other reported Ni-based catalysts. The heterostructure electrocatalyst operates at 1.55 V and 1.26 V to reach 10 and 1 mA cm−2 in two-electrode measurements for overall alkaline water splitting, corresponding to 79% and 98% electricity-to-fuel conversion efficiency with respect to the lower heating value of hydrogen.

Funder

Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Innovation and entrepreneurship project of high-level overseas students in Hangzhou in 2021

Pandeng Plan Foundation of Hangzhou Normal University for Youth Scholars of Materials

Chemistry and Chemical Engineering, Agricultural and Social Development Program Project of Hangzhou Science and Technology Bureau of Zhejiang Province

general items of Zhejiang Provincial Department of Education

Visiting Scholar Development Project of the Department of Education of Zhejiang Provincial

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3