Abstract
FeMgAl−MoS4 LDH was successfully synthesized by a one-pot hydrothermal process followed by ion-exchange methods, and this novel adsorbent was first conducted for aqueous selenite and selenate elimination. The Fe as a component for metal cation layers of LDHs could modulate the layer charge density, leading to more functional groups inserted into layers, and more importantly, this heterogeneous Fe can catalyze the surface reactions between Se(IV) or Se(VI) with S(-II) for oxoanions sequestration. The mechanisms are ion exchange between functional groups with HSeO3− and SeO32− for Se(IV) or SeO42− for Se(VI), followed by reduction by S(-II) from MoS42− groups. The existence of Fe in LDH cation layers, obviously enhanced the reactions (almost two times more for Se(IV) and three times more for Se(VI), respectively), resulting in satisfying adsorption capacities of 483.9 mg/g and 167.2 mg/g for Se(IV) and Se(VI), respectively. Mechanisms were further revealed by elementary analysis, XRD, FT−IR, SEM−EDX, and XPS, as well as the quantitative study. For sorption kinetics, the calculated values of capacities from the pseudo-second-order model are much closer to the experimental values. For sorption isotherms, Langmuir is better than the Freundlich isotherms model for closer capacities (505 mg/g for selenite and 172 mg/g for selenate). All these results demonstrated that the presence of heterogeneous Fe could catalyze the reduction of Se (IV/VI) for the aqueous system, and maybe other high oxidative states hazardous ions. So FeMgAl−MoS4 is a kind of novel adsorbent that offers a promising multi-functional and highly efficient solution for water selenium purification.
Funder
Natural Science Foundation of Hubei Province
National Natural Science Foundation of China
Yunnan Plateau Characteristics of Bio-fertilizer
Applied Basic Research Foundation of Yunnan Province
Yunnan Province Education Department Project
Yunnan Provincial Observation and Research Station
Yunnan Academy of Experts Workstation
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献