Abstract
We have successfully synthesized dithiocarbamate chitosan modified SBA-15 (CS2C@SBA) composites, with promise in vanadium (V(V)) elimination. Among the three composites using different mass ratios of dithiocarbamate chitosan to SBA-15, CS2C@SBA−3, which had the highest CS2 substitution, showed the best performance on V(V) removal of which the maximum adsorption capacity could achieve 218.00 mg/g at pH 3.0. The adsorption kinetics were best fitted with a pseudo−second order reaction model, suggesting a chemisorption mechanism. Meanwhile, the Langmuir model fitted better with the adsorption isotherm, revealing a monolayer adsorption behavior. Through FTIR and XPS analysis, the functional group −SH was identified as dominating reduction sites on this composite, which reduced 73.1% of V(V) into V(IV) and V(III). The functional group −NH− was the main adsorption site for vanadium species. This reaction followed a catalytic reduction coupled adsorption mechanism reducing most of V(V) into less toxic vanadium species. Furthermore, CS2C@SBA−3 showed great selectivity towards V(V) in the presence of various co−existing ions in synthetic wastewater and real water samples. Moreover, CS2C@SBA−3 could retain a removal efficiency over 90% after five adsorption−desorption cycles. Based on the aforementioned results, we can conclude that CS2C@SBA−3 has great potential to be applied in efficient remediation of vanadium water−pollution.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献