Recent Progress of Hydrogenation and Hydrogenolysis Catalysts Derived from Layered Double Hydroxides

Author:

Wang Zhihui,Zhang Wei,Li Cuiqing,Zhang ChenORCID

Abstract

Layered double hydroxides (LDHs), also known as hydrotalcite-like compounds, are widely used in many fields due to their unique structural advantages. Based on LDHs, a wide range of metal catalysts could be synthesized with high metal dispersion, tunable acid-base properties, facile but flexible preparation methods, strong metal-support interaction, and thermal stability. Owing to these outstanding advantages, LDH-derived materials manifest great potential as catalysts, particularly in hydrogenation and hydrogenolysis reactions. More than 200 papers published in the past five years in this field clearly indicated the rapid development of these materials. In this respect, it is imperative and essential to provide a timely review to summarize the current progress and motivate greater research effort on hydrogenation and hydrogenolysis catalysts derived from LDHs. In this review, the applications of LDH-derived materials as heterogeneous catalysts in various hydrogenation and hydrogenolysis reactions were comprehensively discussed. Hydrogenation of unsaturated chemical bonds, hydrodeoxygenation of oxygenated compounds, hydrogenolysis of carbon–carbon bonds and hydrogenation of nitrites and nitriles were described. This review demonstrates the extraordinary potentials of LDH-derived catalysts in hydrogenation and hydrogenolysis reactions, and it is undoubted that LDH-derived catalysts will play an even more significant role in the foreseeable future.

Funder

National Natural Science Foundation of China

Beijing Education Committee Science and Technology Project

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3