Biocatalytic Cascade of Sebacic Acid Production with In Situ Co-Factor Regeneration Enabled by Engineering of an Alcohol Dehydrogenase

Author:

Lu Jie,Lu Dong,Wu Qiuyang,Jin Shuming,Liu Junfeng,Qin MengORCID,Deng Li,Wang Fang,Nie KailiORCID

Abstract

Sebacic acid (1,10-decanedioic acid) is an important chemical intermediate. Traditional chemical oxidation methods for sebacic acid production do not conform with “green” manufacturing. With the rapid development of enzymatic technologies, a biocatalytic cascade method based on the Baeyer–Villiger monooxygenase was developed. The most attractive point of the method is the oleic acid that can be utilized as raw material, which is abundant in nature. However, this bio-catalysis process needs co-factor electron carriers, and the high cost of the co-factor limits its progress. In this piece of work, a co-factor in situ regeneration system between ADH from Micrococcus luteus WIUJH20 (MlADH) and BVMO is proposed. Since the co-factors of both enzymes are different, switching the co-factor preference of native MlADH from NAD+ to NADP+ is necessary. Switching research was carried out based on in silico simulation, and the sites of Tyr36, Asp 37, Ala38, and Val39 were selected for mutation investigation. The experimental results demonstrated that mutants of MlADH_D37G and MlADH_D37G/A38T/V39K would utilize NADP+ efficiently, and the mutant of MlADH_D37G/A38T/V39K demonstrated the highest sebacic acid yield with the combination of BVMO. The results indicated that the in situ co-factor generation system is successfully developed, which would improve the efficiency of the biocatalytic cascade for sebacic acid production and is helpful for simplifying product isolation, thus, reducing the cost of the enzymatic transformations process.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3