Synthesis of Oxygenated Hydrocarbons from Ethanol over Sulfided KCoMo-Based Catalysts: Influence of Novel Fiber- and Powder-Activated Carbon Supports

Author:

Dipheko Tshepo D.ORCID,Maximov Vladimir V.,Osman Mohamed E.ORCID,Eliseev Oleg L.ORCID,Cherednichenko Alexander G.,Sheshko Tatiana F.ORCID,Kogan Victor M.ORCID

Abstract

Ethanol has become a viable feedstock for basic organic synthesis. The catalytic conversion of ethanol provides access to such chemicals as diethyl ether, ethyl acetate, and acetaldehyde. Carbonaceous materials are extensively studied as supports for heterogeneous catalysts due to their chemical and thermal stability, high surface area, and tunable texture. In this paper, ethanol conversion over K10Co3.7Mo12S-catalysts supported on novel activated carbon (AC) materials (i.e., novel powder-AC (DAS and YPK-1), fiber non-woven AC material (AHM), and fabric active sorption (TCA)) was investigated. The catalysts were prepared by the incipient wetness co-impregnation method followed by sulfidation. The catalysts were characterized by employing N2 adsorption–desorption measurements, TEM, SEM/EDX, UV–Vis spectroscopy, and XRF. Catalytic performance was assessed in a fixed-bed down-flow reactor operating at 320 °C, 2.5 MPa, and with continuous ethanol feeding in an He atmosphere. Activity is highly dependent on the support type and catalyst’s textural properties. The activity of the fiber-supported catalysts was found to be greater than the powder-supported catalysts. Ethanol conversion at T = 320 °C, P = 2.5 MPa, and GHSV = 760 L h−1 kgcat−1 increased as follows: (38.7%) KCoMoS2/YPK-1 < (49.5%) KCoMoS2/DAS < (58.2%) KCoMoS2/TCA < (67.1%) KCoMoS2/AHM. Catalysts supported by powder-AC enhanced the formation of MoS2-crystallites, whereas the high acidity of fiber-AC seemed to inhibit the formation of MoS2-crystallites. Simultaneously, a high surface area and a microporous catalytic structure enhance the formation of oxygenates from hydrocarbons. The dehydration and dehydrogenation reactions, which led to the creation of ethene and acetaldehyde, were shown to require a highly acidic catalyst, while the synthesis of ethyl acetate and higher alcohols required a less acidic catalyst.

Funder

RUDN University Scientific Projects Grant System

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3