Synthesis of Ce0.1La0.9MnO3 Perovskite for Degradation of Endocrine-Disrupting Chemicals under Visible Photons

Author:

Maridevaru Madappa C.,Naceruddin Afreen Hooriya,Aljafari Belqasem,Anandan SambandamORCID

Abstract

The UN Environmental Protection Agency has recognized 4-n-Nonylphenol (NP) and bisphenol A (BPA) as among the most hazardous chemicals, and it is essential to minimize their concentrations in the wastewater stream. These industrial chemicals have been witnessed to cause endocrine disruption. This report describes the straightforward hydrothermal approach adopted to produce Ce0.1La0.9MnO3 (CLMO) perovskite’s structure. Several physiochemical characterization approaches were performed to understand the Ce0.1La0.9MnO3 (CLMO) perovskite crystalline phase, element composition, optical properties, microscopic topography, and molecular oxidation state. Here, applying visible photon irradiation, the photocatalytic capability of these CLMO nanostructures was evaluated for the elimination of NP and BPA contaminants. To optimize the reaction kinetics, the photodegradation of NP and BPA pollutants on CLMO, perovskite was studied as a specification of pH, catalyst dosage, and initial pollutant concentration. Correspondingly, 92% and 94% of NP and BPA pollutants are degraded over CLMO surfaces within 120 and 240 min, respectively. Since NP and BPA pollutants have apparent rate constants of 0.0226 min−1 and 0.0278 min−1, respectively, they can be satisfactorily fitted by pseudo-first-order kinetics. The decomposition of NP and BPA contaminants is further evidenced by performing FT-IR analysis. Owing to its outstanding photocatalytic execution and simplistic separation, these outcomes suggest that CLMO is an intriguing catalyst for the efficacious removal of NP and BPA toxicants from the aqueous phase. This is pertinent for the treatment of endocrine-disrupting substances in bioremediation.

Funder

Science and Promotion of Academic Research Collaboration

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3