Green Hydrothermal Synthesis of Zinc Oxide Nanoparticles for UV-Light-Induced Photocatalytic Degradation of Ciprofloxacin Antibiotic in an Aqueous Environment

Author:

Batterjee Maha G.,Nabi ArshidORCID,Kamli Majid RasoolORCID,Alzahrani Khalid Ahmed,Danish Ekram Y.ORCID,Malik Maqsood AhmadORCID

Abstract

The design and development of new cost-effective, clean, and efficient synthesis procedures for the synthesis of nanoparticles have recently become an intriguing research topic with broad implications. This study aimed to develop an eco-friendly biogenic method that uses minimum nontoxic chemicals to yield ZnO nanoparticles with enhanced capabilities for degradation of pharmaceutical by-products. The present study used black dried lemon peel aqueous extract as a biological stabilizing agent to prepare pure and stable zinc oxide nanoparticles (LP-ZnO NPs). The surface morphology, elemental composition, crystalline properties, size, optical properties, the role of functional groups in stabilization, capping, and the thermal stability of LP-ZnO NPs were investigated using scanning electron microscopy equipped with energy dispersive X-ray (SEM-EDX), X-ray diffraction (XRD), UV–visible diffuse reflectance spectroscopy (UV-DRS), PL, Fourier transform infrared (FTIR), Raman spectra, and thermogravimetric (TGA) analyses. Multiphoton resonances were observed in LP-ZnO NPs along the crystalline structure as per Raman analysis. The developed LP-ZnO NPs were thermally stable at an annealing temperature of 500 °C with a weight loss of 53%. Photodegradation of antibiotic ciprofloxacin was observed in the presence of UV light via LP-ZnO NPs (serving as photocatalyst). In addition, in optimal reaction media, the biogenic LP-ZnO NPs retained improved photocatalytic performance toward ciprofloxacin. Meanwhile, in the photodegradation process of CPI molecules via ZnO as a photocatalyst, the optimum catalytic dose, concentration of CIP molecules, and pH were attained at 10 mg, 2 × 10−5 M, and pH 8, respectively. The aim of this research work was to develop a simple, affordable photocatalytic technique for the photodegradation of antibiotics in aqueous media. The photocatalytic process was performed under different experimental conditions, including varying catalytic doses, ciprofloxacin concentrations, and pH of the reaction mixture.

Funder

Ministry of Education and King Abdulaziz University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3