Effects of Site Geometry and Local Composition on Hydrogenation of Surface Carbon to Methane on Ni, Co, and NiCo Catalysts

Author:

Godoy Sebastian,Deshlahra Prashant,Villagra-Soza Francisco,Karelovic Alejandro,Jimenez RomelORCID

Abstract

Surface carbon deposits deactivate Ni and Co catalysts in reactions involving hydrocarbons and COx. Electronic properties, adsorption energies of H, C, and CHx species, and the energetics of the hydrogenation of surface C atom to methane are studied for (100) and (111) surfaces of monometallic Ni and Co, and bimetallic NiCo. The bimetallic catalyst exhibits a Co→Ni electron donation and a concomitant increase in the magnetization of Co atoms. The CHx species resulting from sequential hydrogenation are more stable on Co than on Ni atoms of the NiCo surfaces due to more favorable (C-H)–Co agostic interactions. These interactions and differences between Co and Ni sites are more significant for (111) than for (100) bimetallic surfaces. On (111) surfaces, CH is the most stable species, and the first hydrogenation of C atom exhibits the highest barrier, followed by the CH3 hydrogenation steps. In contrast, on (100) surfaces, surface C atom is the most stable species and CH2 or *CH3 hydrogenations exhibit the highest barriers. The Gibbs free energy profiles suggest that C removal on (111) surfaces is thermodynamically favorable and exhibits a lower barrier than on the (100) surfaces. Thus, the (100) surfaces, especially Ni(100), are more prone to C poisoning. The NiCo(100) surfaces exhibit weaker binding of C and CHx species than Ni(100) and Co(100), which improves C poisoning resistance and lowers hydrogenation barriers. These results show that the electronic effects of alloying Ni and Co strongly depend on the local site composition and geometry.

Funder

FONDECYT regular project

ANID BECAS/DOCTORADO NACIONAL

supercomputing infrastructure of the NLHPC

Conicyt Programa de Astronomia Fondo Quimal 2017

Conicyt PIA

Fondecyt Iniciacion

National Science Foundation

eXtreme Science and Engineering Discovery environment

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3